

Journal of Alloys and Compounds 321 (2001) 54-59

www.elsevier.com/locate/jallcom

The ternary system Gd_2O_3 -SrO-CuO: compounds and phase relations

C.Q. Han^{a,*}, Y. Gao^a, X.L. Chen^a, J.K. Liang^{a,b}, G.H. Rao^a

^aInstitute of Physics and Center for Condensed Matter Physics, Chinese Academy of Science, Beijing 100080, China ^bInternational Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, China

Received 14 November 2000; accepted 11 December 2000

Abstract

The subsolidus phase relations of the Gd₂O₃–SrO–CuO ternary system have been investigated by X-ray powder diffraction. All samples were synthesized in air at 950–1000°C. The system can be divided into ten three-phase regions and two solid solutions. In this system, there exist two solid solutions: $Sr_{14-x}Gd_xCu_{24}O_y$ and $Gd_{1+x}Sr_{2-x}Cu_2O_y$ and one ternary compound: $GdSr_3Cu_2O_y$. The solid solution $Sr_{14-x}Gd_xCu_{24}O_y$ ($0 \le x \le 6.5$) crystallizes in an orthorhombic structure cell with space group *Fmmm* and lattice constants of a=3.918(1)-3.975(1) Å, b=11.466(3)-11.282(1) Å and c=13.389(4)-12.832(1) Å. The solid solution $Gd_{1+x}Sr_{2-x}Cu_2O_y$ ($0 \le x \le 0.3$) belongs to an orthorhombic system with space group *Immm*, lattice constants a=3.755(1)-3.763(1) Å, b=11.354(4)-11.257(4) Å and c=20.008(4)-20.049(5) Å. The ternary compound ($Gd_{0.25}Sr_{0.75})_2CuO_{4-\delta}$ crystallizes in an orthorhombic structure with space group *Immm* and lattice constants of a=3.7084(3) Å, b=3.7841(4) Å and c=12.6129(9) Å. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Rare earth compounds; Oxide materials; Crystal structure; X-ray diffraction; Phase diagram

1. Introduction

In order to clarify the phase relations and to search for new superconductors, a series of R_2O_y -BaO-CuO (R=La, Y, Gd, Nd, Ho, Dy, Yb, Pr) ternary systems have been investigated. However, the ternary systems of R_2O_3 -SrO-CuO have been less investigated. Results were reported only for the systems Nd₂O₃-SrO-CuO [1-3], La₂O₃-SrO-CuO [4,5], Ho₂O₃-SrO-CuO [6], Y₂O₃-SrO-CuO [7,8] and Ln_{2-x}Sr_{1+x}Cu₂O_{6-x/2} (Ln=Sm, Eu, Gd) [9]. So it is necessary to investigate the phase relations of other R₂O₃-SrO-CuO systems to find further new compounds. As one of a series of investigations on the phase relations of R₂O₃-SrO-CuO systems, we report the compounds and subsolidus phase relations of the Gd₂O₃-SrO-CuO ternary system.

2. Experimental details

A series of Gd_2O_3 -SrO-CuO samples of different composition were prepared by solid-state reaction of an appropriate mixture of high purity (>99.9%) Gd_2O_3 , SrO and CuO. The raw powders with proper compositions were

*Corresponding author.

Fig. 1. Subsolidus phase relations of GdO_{1.5}–SrO–CuO system derived from samples sintered at 950–1000°C in air: (\bullet) single-phase, (\bigcirc) two-phase, (\triangle) three-phase.

E-mail address: cqhan@aphy.iphy.ac.cn (C.Q. Han).

Fig. 2. X-ray diffraction patterns of the solid solution $\mathrm{Sr}_{14-x}\mathrm{Gd}_x\mathrm{Cu}_{24}\mathrm{O}_y$. At x > 7, CuO and CuGd₂O₄ exist.

Table 1 List^a of *d* spacings, diffraction intensity and *hkl* for $\text{Gd}_{1+x}\text{Sr}_{2-x}\text{Cu}_2\text{O}_y$ (x=0.2), *a*=3.7564(9) Å, *b*=11.293(3) Å, *c*=20.034(3) Å, space group *Immm*, *Z*=6

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.	h k l	$d_{ m calc}$	$d_{_{\mathrm{obs}}}$	$I_{\rm obs}$	No.	h k l	$d_{\rm calc}$	$d_{\rm obs}$	$I_{\rm obs}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0 1 3	5.75	5.75	2	28	039	1.916	[1.915	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	020	5.65	5.65	3	29	109	1.915	L	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	022	4.92	4.92	2	30	200	1.878	1.878	32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0 1 5	3.775	3.773	3	31	138	1.823	1.822	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	101	3.692	3.691	10	32	1 1 10	1.746	1.745	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1 1 0	3.564	3.562	2	33	0 0 12	1.669	1.669	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	006	3.339	3.337	8	34	1011	1.639	1.638	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	033	3.279	3.278	1	35	0 2 12	1.638	L	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	1 1 4	2.904	2.903	2	36	206	1.600	1.599	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	026	2.874	2.872	1	37	235	1.550	1.550	34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	040	2.823	2.823	1	38	244	1.492	1.493	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1 0 5	2.740	2.739	100	39	237	1.449	1.449	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	1 3 0	2.659	2.657	72	40	219	1.424	1.423	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	0 0 8	2.504	2.503	1	41	1 3 12	1.413	1.414	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	044	2.459	2.458	7	42	2010	1.370	1.370	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	134	2.348	2.347	1	43	1 1 14	1.328	1.328	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	037	2.278	2.276	10	44	0 3 15	1.259	1.258	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	107	2.276	L		45	1015	1.258	L	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	051	2.244	2.243	9	46	2012	1.248	1.248	3
21 0 1 9 2.184 2.183 4 48 2 3 11 1.235 1.235 5 22 0 4 6 2.155 2.155 2 49 3 1 2 1.235 L 23 1 2 7 2.111 2.111 2 50 3 0 5 1.195 1.195 4 24 1 3 6 2.080 2.080 21 51 3 3 0 1.188 1.188 5 25 0 0 10 2.003 2.002 14 52 1 0 17 1.124 [1.124 3 26 0 5 5 1.967 [1.966 4 53 3 2 7 1.124 [27 1 4 5 1.966 [54 2 6 10 1.107 1.107 2 55 3 3 10 1.022 1.022 4	20	1 4 1	2.243	L		47	266	1.235	Γ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	019	2.184	2.183	4	48	2311	1.235	1.235	5
23 1 2 7 2.111 2.111 2 50 3 0 5 1.195 1.195 4 24 1 3 6 2.080 2.080 21 51 3 3 0 1.188 1.188 5 25 0 0 10 2.003 2.002 14 52 1 0 17 1.124 [1.124 3 26 0 5 5 1.967 [1.966 4 53 3 2 7 1.124 [27 1 4 5 1.966 [54 2 6 10 1.107 1.107 2 55 3 3 10 1.022 1.022 4	22	046	2.155	2.155	2	49	312	1.235	L	
24 1 3 6 2.080 2.1 51 3 3 0 1.188 1.188 5 25 0 0 10 2.003 2.002 14 52 1 0 17 1.124 [1.124] 3 26 0 5 5 1.967 [1.966] 4 53 3 2 7 1.124 [27 1 4 5 1.966 [54 2 6 10 1.107 1.107 2 55 3 3 10 1.022 1.022 4	23	127	2.111	2.111	2	50	3 0 5	1.195	1.195	4
25 0 0 10 2.003 2.002 14 52 1 0 17 1.124 [1.124] 3 26 0 5 5 1.967 [1.966] 4 53 3 2 7 1.124 [1 27 1 4 5 1.966 [54 2 6 10 1.107 1.107 2 55 3 3 10 1.022 1.022 4	24	136	2.080	2.080	21	51	330	1.188	1.188	5
26 0 5 5 1.967 [1.966] 4 53 3 2 7 1.124 L 27 1 4 5 1.966 L 54 2 6 10 1.107 1.107 2 55 3 3 10 1.022 1.022 4	25	0 0 10	2.003	2.002	14	52	1017	1.124	1.124	3
27 1 4 5 1.966 54 2 6 10 1.107 1.107 2 55 3 3 10 1.022 1.022 4	26	055	1.967	1.966	4	53	327	1.124	L	
55 3 3 10 1.022 1.022 4	27	1 4 5	1.966	L		54	2610	1.107	1.107	2
						55	3 3 10	1.022	1.022	4

^a Figure of merit: M(23) = 15.1, F(23) = 15.8.

thoroughly mixed, ground and pressed into pellets, which were sintered at 950–1000°C in air for about 48 h, and then slowly cooled in the furnace to room temperature. The above process was repeated for some of the samples until homogeneity was reached. Forty-five samples with different compositions were prepared and their compositions are shown in Fig. 1.

Phase identifications were carried out on a Rigaku Rint-2400 diffractometer with Cu K α radiation and a graphite monochromator, operating at a step-scan mode with a scanning step of 2θ =0.02° and a sampling time of 2 s. For the measurement of lattice parameters of the compounds, pure Si was added to the specimens as an internal standard.

3. Results and discussion

According to the results of X-ray diffraction analysis, the subsolidus phase relations of the Gd_2O_3 -SrO-CuO system are shown in Fig. 1. There exist two solid solutions, $Sr_{14-x}Gd_xCu_{24}O_y$ and $Gd_{1+x}Sr_{2-x}Cu_2O_y$ and one ternary compound, $(Gd_{0.25}Sr_{0.75})_2CuO_{4-\delta}$.

For the binary system Gd₂O₃-CuO, three compounds, Gd₂CuO₄, Gd_{1.726}CuO₄ and GdCu₂O₄ have been reported [10-13]. But under our experimental conditions, only Gd₂CuO₄ was identified. It crystallizes in an orthorhombic unit cell with space group 14/mmm. Its lattice parameters are a=3.894 and c=11.883 Å. Our result is in good agreement with the results previously reported [10,11]. In the binary system Gd₂O₃-SrO, two binary compound $SrGd_2O_4$ and $SrGd_4O_7$ have been reported [14]. Only SrGd₂O₄ was found under our experimental conditions. In the system SrO-CuO, we synthesized three binary compounds Sr₂CuO₃, SrCuO₂ and Sr₁₄Cu₂₄O₄₁, but did not find SrCu₂O₃. This result agrees with the result of Chen et al. [5] and DeLeeuw et al. [3]. The compound $Sr_{14}Cu_{24}O_{41}$ has an orthorhombic lattice, space group Fmmm, with lattice parameters a=11.466 Å, b=13.389 Å and c=3.918Å [15]. The compound SrCuO₂ crystallizes in an orthorhombic lattice, space group *Cmcm*, with a=3.562 Å, b=16.32 Å and c=3.918 Å [16,17]. The compound Sr₂CuO₃ also belongs to an orthorhombic system with space group *Immm*. Its lattice parameters are a=12.68-12.71 Å, b=3.910-3.913 Å and c=3.48-3.50 Å [16,18]. In this system, there exist two solid solutions,

In this system, there exist two solid solutions, $Sr_{14-x}Gd_xCu_{24}O_y$ and $Gd_{1+x}Sr_{2-x}Cu_2O_y$ and one ternary compound, $(Gd_{0.25}Sr_{0.75})_2CuO_{4-\delta}$. Like Ca, Y, Nd and Ho, Gd can partially substitute for Sr in $Sr_{14}Cu_{24}O_{41}$ to form the solid solution $Sr_{14-x}Gd_xCu_{24}O_y$. X-ray diffraction patterns of the selected solid solution members of $Sr_{14-x}Gd_xCu_{24}O_y$ are shown in Fig. 2. We used program DICVOL91 [19] to index the X-ray powder diffraction data and determine the lattice parameters. Fig. 3 shows the linear variations of lattice constants vs. the Gd content for the solid solution. The lattice parameters *b*, *c* and *V*

Fig. 3. Variations of the lattice constants *a*, *b*, *c* and unit cell volume *V* vs. *x* for $\operatorname{Sr}_{14-x}\operatorname{Gd}_{x}\operatorname{Cu}_{24}O_{y}$.

decrease with increasing Gd content, while *a* lightly increases. The parameter *c* decreases in a more rapid manner than *b*. From Figs. 2 and 3, we find that when x>6.5, the lattice parameters of $Sr_{14-x}Gd_xCu_{24}O_y$ remain constant and other phases appear. This means that the samples with x>7 are three phase. According to the lattice constants in the single phase and three-phase regions, we can conclude that solid solution limit is about x=6.5. Among the $Sr_{14-x}Ln_xCu_{24}O_y$ 14–24 lanthanide analogs, one has x=5 for the Y system and x=7 for the Nd system, but *x* is only equal to 4 for the La system. So it is difficult to explain the solid solution limit in view of the difference between Ln^{3+} and Sr^{2+} .

Nguyen et al. [9] have been reported a solid solution of the type $Gd_{1+x}Sr_{2-x}Cu_2O_y$. Our results are almost in agreement with theirs. X-ray diffraction patterns of select-

Fig. 4. X-ray diffraction patterns of the solid solution $Gd_{1+x}Sr_{2-x}Cu_2O_y$. At x > 0.3, Gd_2CuO_4 exists but $Sr_{7.5}Gd_{6.5}Cu_{24}O_{41}$ not obviously. At x = 1.0, a significant amount of $Sr_{7.5}Gd_{6.5}Cu_{24}O_{41}$ and $CuGd_2O_4$ is evident.

ed solid solution members of $Gd_{1+x}Sr_{2-x}Cu_2O_y$ are shown in Fig. 4. We used the program DICVOL91 [19] to the index X-ray powder diffraction data. The results obtained for x=0 are listed in Table 1. We find that the solid solution has an orthorhombic lattice, with cell parameters a=3.755(1)-3.763(1) Å, b=11.354(4)-11.257(4) Å and c=20.008(4)-20.049 (5) Å. Fig. 5 shows the variations of the lattice constants *vs.* the Gd content for the solid solution $Gd_{1+x}Sr_{2-x}Cu_2O_y$. From Figs. 4 and 5, we find that when x>3, the lattice parameters of the solid solution remain constant and other phase appear. So we can conclude that the solid solution limit is about x=6.5. Another compound we identified in this study is $(Gd_{0.25}Sr_{0.75})_2CuO_{4-\delta}$. Listed in Table2 are the diffraction data for $(Gd_{0.25}Sr_{0.75})_2CuO_{4-\delta}$. Because the diffraction lines with indices h + k + l = 2n + 1 are systematically extinct, the possible space groups are *Immm*, *I222*, *I2*₁*2*₁*2*₁ and *Imm2*. According to the diffraction data and the results of Ref. [5], it has the same space group as $Nd_{2-x}Sr_xCuO_{4-y}$. So it can be indexed as an orthorhombic pattern with space group *Immm*, and the parameters a = 3.7084(3) Å, b = 3.7841(4) Å and c = 12.6129(9) Å.

By comparing the system $GdO_{1.5}$ -SrO-CuO system with other RO_{1.5}-SrO-CuO (R=La, Nd, Ho and Y)

Table 2

List^a of d spacings, diffraction intensity and hkl for $(Gd_{0.25}Sr_{0.75})_2CuO_{4-\delta}$, a=3.7084(3) Å, b=3.7841(4) Å, c=12.6129(9) Å, space group Immm, Z=2

No.	h k l	d_{calc}	$d_{_{\rm obs}}$	$I_{\rm obs}$	No.	h k l	d_{calc}	$d_{_{\mathrm{obs}}}$	$I_{\rm obs}$
1	0 0 2	6.31	6.31	11	19	2 1 3	1.548	1.548	32
2	0 1 1	3.625	3.626	14	20	026	1.406	1.406	13
3	101	3.557	3.556	12	21	125	1.401	1.401	10
4	004	3.153	3.154	22	22	206	1.391	1.391	18
5	013	2.813	2.812	61	23	215	1.390	L	
6	103	2.781	2.780	84	24	1 1 8	1.355	1.355	12
7	1 1 0	2.648	2.648	100	25	220	1.324	1.324	16
8	006	2.102	2.102	36	26	127	1.231	[1.231	10
9	105	2.086	2.085	18	27	301	1.230	L	
10	1 1 4	2.028	2.028	38	28	217	1.223	1.222	15
11	020	1.892	1.892	29	29	224	1.221	L	
12	2 0 0	1.854	1.854	30	30	033	1.208	1.208	10
13	116	1.646	1.646	38	31	208	1.201	1.201	8
14	024	1.622	1.622	16	32	130	1.194	1.194	12
15	107	1.621	L		33	303	1.186	1.186	13
16	204	1.598	1.599	15	34	3 1 0	1.175	1.175	15
17	0 0 8	1.577	1.577	9	35	1 1 10	1.120	1.120	14
18	123	1.564	1.564	31	36	136	1.038	1.038	7

^a Figure of merit: M(33) = 33.3, F(33) = 26.7.

Fig. 5. Variations of the lattice constants *a*, *b*, *c* and unit cell volume *V* vs. *x* for $\text{Gd}_{1+x}\text{Sr}_{2-x}\text{Cu}_2\text{O}_y$.

systems, we found that the ionic radius of \mathbb{R}^{3^+} is a dominant factor for determining the phase relations in the different $\mathbb{RO}_{1.5}$ –SrO–CuO systems. The diagrams become more complicated with increasing lanthanide ion radius. The ionic radius of \mathbb{Y}^{3^+} is the smallest of these five ions for the same coordination and only in the Y system, one solid solution, $\mathrm{Sr}_{14-x} Y_x \mathrm{Cu}_{24} \mathrm{O}_{41}$ is found [7,8]. In the Ho system one finds one solid solution, $\mathrm{Sr}_{14-x} \mathrm{Ho}_x \mathrm{Cu}_{24} \mathrm{O}_{41}$ and one ternary compound $\mathrm{SrHo}_2\mathrm{CuO}_5$ [6]. In the Gd system, there exist two solid solutions, $\mathrm{Sr}_{14-x}\mathrm{Gd}_x\mathrm{Cu}_{24}\mathrm{O}_y$ and $\mathrm{Gd}_{1+x}\mathrm{Sr}_{2-x}\mathrm{Cu}_2\mathrm{O}_y$ and one ternary compound, ($\mathrm{Gd}_{0.25}\mathrm{Sr}_{0.75}$)₂ $\mathrm{CuO}_{4-\delta}$. In the Nd system there are three solid solutions, $\mathrm{Sr}_x\mathrm{Nd}_{2-x}\mathrm{CuO}_y$ and

 $Sr_{14-x}Nd_xCu_{24}O_{41}$ and one compound, $SrNd_2Cu_2O_6$ [5]. The ionic radius of La^{3+} is the largest among these five ions and is closest to the ionic radius of Sr^{2+} . In La system there are five ternary solid solution series, $\operatorname{Sr}_{14-x}\operatorname{La}_{x}\operatorname{Cu}_{24}\operatorname{O}_{41},$ $La_{2-x}Sr_{1+x}Cu_2O_{6+\delta}$ $\operatorname{La}_{1+x}\operatorname{Sr}_{2-x}\operatorname{Cu}_2\operatorname{O}_{5.5+\delta}, \quad \operatorname{La}_{8-x}\operatorname{Sr}_x\operatorname{Cu}_8\operatorname{O}_{20-\delta}$ and (La, $Sr)_2CuO_{4-\delta}$ [4,5].

4. Conclusions

In conclusion, we have synthesized samples of the Gd₂O₂-SrO-CuO ternary system in air at 950-1000°C. The subsolidus phase relations of the Gd₂O₃-SrO-CuO ternary system have been investigated by X-ray powder diffraction. The system can be divided into ten three-phase regions and two solid solutions. In this system, there exist solid solutions: $\mathrm{Sr}_{14-x}\mathrm{Gd}_{x}\mathrm{Cu}_{24}\mathrm{O}_{y}$ two and $Gd_{1+r}Sr_{2-r}Cu_2O_{v}$ ternary compound: and one $GdSr_3Cu_2O_{\nu}$. The solid solution $Sr_{14-x}Gd_xCu_{24}O_{\nu}$ (0 \leq $x \le 6.5$) crystallizes in an orthorhombic unit cell with space group *Fmmm* and lattice constants of a = 3.918(1)-3.975(1) Å, b=11.466(3)-11.282(1) Å and c =13.389(4) - 12.832(1)Å. The solid solution $Gd_{1+x}Sr_{2-x}Cu_2O_y$ ($0 \le x \le 0.3$) belongs to an orthorhombic system with space group *Immm*, lattice constants a =3.755(1) - 3.763(1) Å, b = 11.354(4) - 11.257(4) Å and c =20.008(4)–20.049(5) Å. The ternary compound $(Gd_{0.25}Sr_{0.75})_2CuO_{4-\delta}$ crystallizes in an orthorhombic structure with space group Immm and lattice constants of a = 3.7084(3) Å, b = 3.7841(4) Å and c = 12.6129(9) Å. By comparing the GdO1.5-SrO-CuO system with other RO₁₅-SrO-CuO (R=La, Nd, Ho and Y) systems, we found that the larger the lanthanide ion radius, the more complicated the corresponding phase diagram.

Acknowledgements

This work was supported by the State Key Project on Fundamental Research in China.

References

- [1] C. Michel, B. Raveau, Rev. Chim. Miner. 21 (1984) 407.
- [2] H. Müller-Buschbaum, Angew. Chem. 89 (1977) 704.
- [3] D.M. DeLeeuw, C.A.H.A. Mutsaers, G.P.J. Geelen, C. Langereis, J. Solid State Chem. 80 (1989) 276.
- [4] D.M. DeLeeuw, J. Less-Common Metals 150 (1989) 95-107.
- [5] X.L. Chen, J.K. Liang, C. Wang, G.H. Rao, X.R. Xing, Z.H. Song, Z.Y. Qiao, J. Alloys Comp. 205 (1994) 101.
- [6] W. Wong-Ng, J. Dillingham, L.P. Cook, J. Solid State Chem. 149 (2000) 333.
- [7] Y. Ikeda, Y. Oue, K. Inaba, M. Takano, Y. Bando, Y. Takeda, R. Kanno, H. Kitaguchi, J. Takada, Funtai Oyobi Funmatsu Yakin 35 (3) (1988) 329.

- [8] F. Wu, S.S. Xie, Z. Chen, J.K. Liang, J. Mater. Sci 27 (11) (1992) 3082.
- [9] N. Nguyen, J. Choisent, B. Raveau, Mater. Res. Bull. 567 (1982) 17.
- [10] K.A. Kubat-Martin, Z. Fisk, K.R. Ryan, Acta Crystallogr. C 44 (1988) 1518.
- [11] J. Mahia, A. Vieiro, J. Mira, J. Ricas, M.A. Lopez-Quintela, J. Solid State Chem. 122 (1996) 25.
- [12] P. Vigoureux, M. Braden, A. Gukasov, W. Paulus, P. Bourages, A. Cousson, D. Petitgrand, J.P. Lauriat, M. Meven, S.N. Barilo, D.I. Zhigunov, P. Adelmann, G. Heger, Physica C 273 (1997) 239.
- [13] J.L. Luce, A.M. Stacy, Chem. Mater. 9 (1997) 1508.
- [14] P. Barry, R. Roy, J. Inorg. Nucl. Chem. 29 (1967) 1.
- [15] E.M. McCarron, M.A. Subramanian, J.C. Calabiese, R.L. Harlew, Mater. Res. Bull. 23 (1988) 1355.
- [16] J.K. Liang, Z. Chen, F. Wu, S.S. Xie, Solid State Commun. 75 (1990) 247.
- [17] L. Teske Chr, Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 379 (1970) 234.
- [18] L. Teske Chr, Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 371 (1969) 325.
- [19] A. Boultif, D. Louer, J. Appl. Crystallogr. 24 (1991) 987.